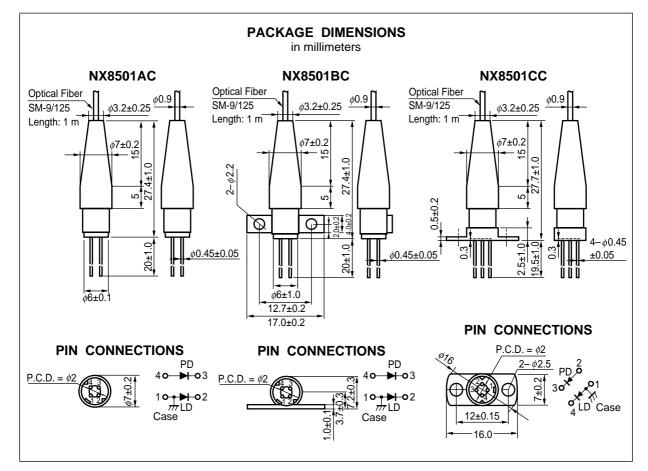
LASER DIODE NX8501 Series

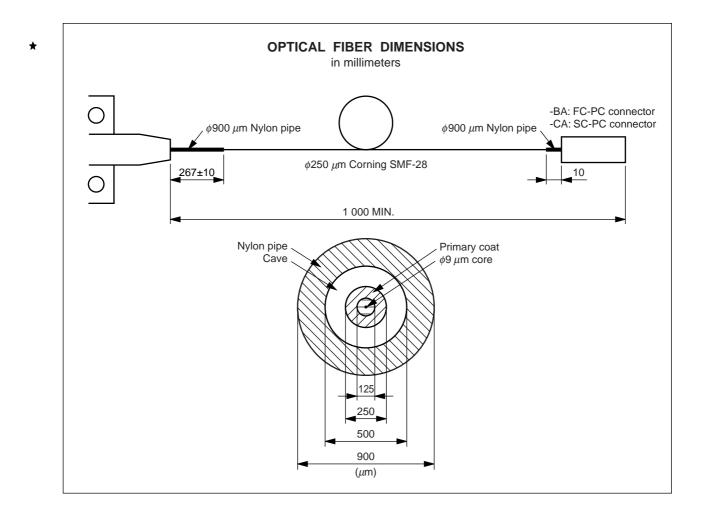
1 510 nm OPTICAL FIBER COMMUNICATIONS INGaASP STRAINED MQW DC-PBH LASER DIODE MODULE

DESCRIPTION


NEC

The NX8501 Series is a 1 510 nm phase-shifted DFB (Distributed Feed-Back) laser diode with single mode fiber. The Multiple Quantum Well (MQW) structure is adopted to achieve stable dynamic single longitudinal mode operation over wide temperature range of 0 to +65 $^{\circ}$ C.

It is designed for on-line monitoring of dense WDM fiber-optic networks.


FEATURES

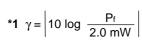
- Peak wavelength
- Output power
- Low threshold current
- $\lambda_p = 1510 \text{ nm}$ Pf = 2.0 mW Ith = 20 mA @ Tc = 25 °C
- Wide operating temperature range $T_c = 0$ to +65 °C
- InGaAs monitor PIN-PD
- Based on Bellcore TA-NWT-000983

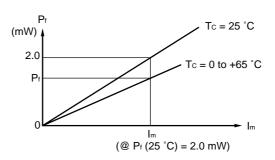
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

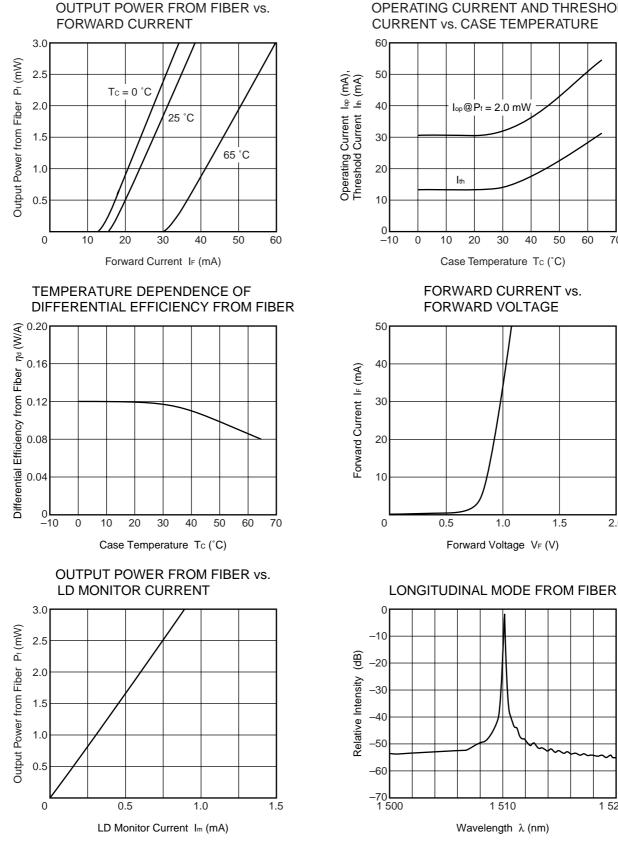
The mark **★** shows major revised points.

***** ORDERING INFORMATION

Part Number	Available Connector	Flange Type	Fiber Type
NX8501AC	Without Connector	No Flange	ϕ 250 μ m Corning
NX8501AC-BA	With FC-PC Connector		SMF-28 with loose tube ^{*1}
NX8501AC-CA	With SC-PC Connector		
NX8501BC	Without Connector	Flat Mount Flange	
NX8501BC-BA	With FC-PC Connector		
NX8501BC-CA	With SC-PC Connector		
NX8501CC	Without Connector	Vertical Flange	
NX8501CC-BA	With FC-PC Connector		
NX8501CC-CA	With SC-PC Connector		
NX8501AG	Without Connector	No Flange	Standard SMF
NX8501AG-BA	With FC-PC Connector		
NX8501AG-CA	With SC-PC Connector		
NX8501BG	Without Connector	Flat Mount Flange	
NX8501BG-BA	With FC-PC Connector		
NX8501BG-CA	With SC-PC Connector		
NX8501CG	Without Connector	Vertical Flange	
NX8501CG-BA	With FC-PC Connector		
NX8501CG-CA	With SC-PC Connector		


*1 Please refer to OPTICAL FIBER DIMENSIONS.


ABSOLUTE MAXIMUM RATINGS (Tc = 25 °C, unless otherwise specified)


Parameter	Symbol	Ratings	Unit
Optical Output Power from Fiber	Pf	5	mW
Forward Current of LD	lf	200	mA
Reverse Voltage of LD	Vr	2.0	V
Forward Current of PD	lf	10	mA
Reverse Voltage of PD	Vr	20	V
Operating Case Temperature	Tc	0 to +65	°C
Storage Temperature	Tstg	-40 to +85	°C
Lead Soldering Temperature (10 s)	Tsld	260	°C

ELECTRO-OPTICAL CHARACTERISTICS (Tc = 0 to +65 °C, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward Voltage	VF	$P_f = 2.0 \text{ mW}, \text{ Tc} = 25 ^{\circ}\text{C}$		1.6	2.0	V
Operating Current	Гор	Pf = 2.0 mW		80	100	mA
Threshold Current	Ith	P_f = 0.2 to 1.0 mW, Tc = 25 °C		20	30	mA
Differential Efficiency from Fiber	η d	P _f = 2.0 mW	0.04	0.08		W/A
Peak Emission Wavelength	λρ	P _f = 2.0 mW	1 500	1 510	1 520	nm
Side Mode Suppression Ratio	SMSR	P _f = 2.0 mW	30	35		dB
Spectral Line Width	Δν	P_f = 2.0 mW, 3 dB down, Tc = 25 °C		2	10	MHz
Relative Intensity Noise	RIN	$P_f = 2.0 \text{ mW}, \text{ Tc} = 25 ^{\circ}\text{C}$		-155	-150	dB/Hz
Rise Time	tr	10-90 %, Tc = 25 °C, Pf = 2.0 mW		0.3	0.5	ns
Fall Time	tr	90-10 %, Tc = 25 °C, Pf = 2.0 mW		0.3	0.5	ns
Monitor Current	Im	V_R = 5 V, P _f = 2.0 mW, T _c = 25 °C	100	1 000	2 000	μA
Monitor Dark Current	lo	V _R = 5 V, T _c = 25 °C			10	nA
Tracking Error	γ*1	Im = const. (@ Pf = 2.0 mW, Tc = 25 °C)	-1.0		1.0	dB

TYPICAL CHARACTERISTICS (Tc = 25 °C, unless otherwise specified)

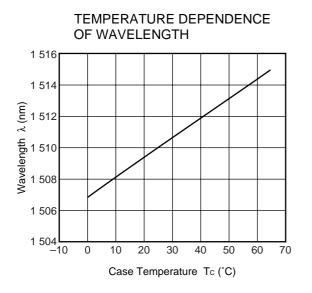
OPERATING CURRENT AND THRESHOLD CURRENT vs. CASE TEMPERATURE

30

1.0

1.5

2.0


40

50

60

70

1 520

Remark The graphs indicate nominal characteristics.

★ LD FAMILY FOR DENSE WDM APPLICATION

	Absolute Maximum Ratings		Typical Characteristics				
Part Number	Тс (°С)	T₅tg (°C)	I _{th} (mA)	P _f (mW)	λc (nm)	Description	Package
			TYP.	MIN.	TYP.		
NDL7540PA	-20 to +65	-40 to +85	40	90	1 480	1 480 nm pump LD module	BFY
NX7460LE ^{*1}	-20 to +65	-40 to +85	25	120	1 480	1 480 nm pump LD module	BFY
NX8501 Series	0 to +65	-40 to +85	20	2	1 510	Telemetry	Coaxial
NX8561JC ^{*1}	0 to +65	-40 to +85	20	3	1 510	Telemetry	DIP
NX7660JC ^{*1}	-20 to +65	-40 to +85	15	5	1 625	Telemetry	DIP
NDL7910P	-20 to +70	-40 to +85	7	0.5	1 550 ^{*2}	2.5 G EA modulator integrated module	BFY
NX8562LB	-20 to +65	-40 to +85	20	20	1 550 ^{*2}	1 550 CW LD module	BFY
NX8563LB	-20 to +65	-40 to +85	20	10	ITU-T ^{*3}	1 550 CW LD module	BFY

*1 Under development

*2 Wavelength selectable for ITU-T standards upon request.

***3** Wavelength selectable for ITU-T standards.

REFERENCE

Document Name	Document No.
NEC semiconductor device reliability/quality control system	C11159E
Quality grades on NEC semiconductor devices	C11531E
Semiconductor device mounting technology manual	C10535E
Semiconductor selection guide	X10679E

[MEMO]

[MEMO]

CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

SEMICONDUCTOR LASER

)) ≣โ

AVOID EXPOSURE-Invisible Laser Radiation is emitted from this aperture

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these circuits,
 software, and information in the design of the customer's equipment shall be done under the full responsibility
 of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
 parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8